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The problem of natural oscillation of an elastic isotropic half-space in which the trans- 

verse velocity achieves a minimum at some depth, and is monotonous in the rest, is con- 
sidered. It is assumed that the properties of the medium depend continuously on the 

depth 2 . 
The high-frequency asymptotic behavior of the spectrum of the problem and the 

dependence of the eigen~n~tions on 2 are studied. It is shown that the nature of the 

oscillations depends essentially on whether the minimum of the transverse velocity will 
be greater or less than the Rayleigh velocity on the surface, The method of asymptotic 

splitting of a system of ordinary differential equations is used to carry out the investiga- 

tion. 

1, Pormulrtion af the problem; ditper6fon equrtian, Let US COW 

sider the half-space z > 0, - x < x, y < -,i_ CC, occupied by an elastic isotropic 

medium with the Lame’ parameters i (2) , id (z> and the density P f 2). The displace- 

ment vector u(x, &, 2 f t> satisfies the system 

p $ = (h f 2~) grad div u - p rot rot u + grad 3L div u + 

+ 2 (grad p, “;T) u f [grad p, rot ul WI 

Let us consider the plane problem, i.e. u = u fz, Z, 1) = Cur, 0, u,). We assume 
the boundary of the half-space to be free of stresses, i. e. at 2 = 0 

As Z-z= the displacements decrease in the sense that 
co 

Let us consider particular solutions of (1.1) of a special kind, which have the character 
of waves travelling along the x -axis 

u, (s, 2, t; k) = (G, (2, k. 5) sin k (z - to). 0, Gz (2, k, aj cos k fX - to)) -:: 

= Re {e ~~~~~-.r) (iGt, 0, G,)j (l-4) 

Here k is the wave number, B the phase velocity. From (1.1) to (1. 3) we obtain a 
Storm-Liouville type problem on the Z 2 0 half-axis for the two-dimensional vector 

G=(G&& 
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- (AG') -4 k2ZIG' - k (CG)' j-- kC'G' = k2a2pEG (15) 

AG”+kCG=O for t=o 

it is convenient to introduce z = [Z,, Z,, Za, Z,) = (G,, Gs+ k-“G,‘, k”Wn’)t 

then (1.5) becomes 
Z’ = (ka + K) z Cl -8) 

where 4 x 4 matrices I?’ and K are defined in El]. 

Let Zp and 2’ be any two linearly independent solutions of the system (1.8) satisfy- 

ing the condition (1.7). The solution of the problem (1.5) to (1.7) may be written as 

foil0 ws G =aGP -I- f3G" W8 
Hence, ~2. and @ are determined from the algebraic homogeneous system 

D, (k, @a -I- D, fk @)B = 0, E, (k, o) a -I- I$ fk, a) B r= Q 

with the determinant 
A (k, a) = Dp (k, a) I?, (k, 4 -& (k, 0) D, (k, a) (1 .lO) 

I+ (k, (r) = k (2% - 2;) Lo, &(k, a) =k(Z:f-pq_ (I = PI ‘c) 

The solutions of Eq. 
A (k, u) = 0 (1.11) 

henceforth designated the dispersion equation, are connected in an evident manner to 

the eigen numbers of the problem (1.5) to (1.7) ; the corresponding vectors G (9. ?s, 0) 
will be eigenfunctions of the problem. 

The asymptotic behavior of the solutions of the dispersion equation as k-+00 as well 
as the dependence of the eigenfunctions on 2 are studied herein, 

As is known @I, in the case of a homogeneous medium rhe system (1.5) fs solved in 
terms of elementary functions, Eq, (1.11) is independent of k , and for 0 > 0, a unique 
solurion of (I. 11) exists, CT E Ua (the so-called Rayleigh velocity) wherein 

0<,v, < us* 0s = v’r/P 
Here Ve is the transverse velocity. The corresponding solution u, decreases expa- 

nentially as Z-b=, 

The case of an inhomogeneous half-space in which zJS (z) > cR has been considered 

in P], where the dispersion equation has been studied in the domain 
0 <a <Q < rnin V, (4 - a. 

The domain G s min V, (8) , wherein the case vR > min us (z) is admitted, is considered 
in this paper. In this connection, turning points of the system (1.8) should be examined. 

2, Atymptotfc of rolutfon, of ths 8yrtrm (1.8). Thecharacteristic 
numbers of the matrix H are [l] 

rtmp (2, @I, I@; (2, a) 
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Evidently, for 0 < min Z?, (Z) all the characteristic numbers are different (since 72, >?‘L, ) 

and the asymptotic of Ia. D. Tamarkin used in [4] may be applied. For simplicity, let 

us consider that, starring wirh some depth 21 > 0, the functions x r i_i, p are constant (“1 
The result of applying the classical asymptotic is : if the functions i(Z) , i_l(iY> , F (Z] 
have three continuous derivatives, then the dispersion equation (1, 11) has the asymptotic 

representaticn 
:A0 (0) -Jim I,,-’ .\t (a) -1. 0 (A?) 0 i2:l I / 

4(, (0) ~~ ! f -+ ms2 (0, a) 12 -- /tnr,, (0, o)m, (0, 51 

in the interval ct c.: E < 0 \i nlitl I’ (2) - f 

Here L$,( D) is the Rayleigh determinant for the homogeneous half-space Z 2 0 , It 

follows from (2.1) that if the condition 

v,, 5 min z?,(z) >> 2:~ (2.2) 

is satisfied (Fig. la), then for at least !Z z+ I there exists ct solution off% 1) of the form 

<Tfi [k) (‘n : k-~-?;z -i- 0 ~P-“$ ;.> s> + ._. tt 1 

The coefficient 221 has been found in 13 j* 
xh case the condition (2.2) is violated (Fig. lh), the ‘T’amarkin asymptotic is not appli*” 

cable since there ate turning points 

(we designate those values csf’ Z 
For which the characteristic narn- 

hers af the matrix i’: agree, as Tut - 

ing points). 
The turning points of the system 

(1. 8) have been encountered earlier 

Fig. 1 
in [I], where the requisite asymp- 

totic has been constructed by a stan- 

dard method. In the case under consideration, at least two turning points are encountered 

in the interval z 2 0, which complicates the standard method. An asymptotic of the 

solutions of (1. 8) could be found by joining the standard asymptotic ; however, difficul- 

ties arise here in the investigation of the spectrum near the quasi-intersections, It is 
simplest to utilize the splitting method [6 and 73, although it imposes more stringent 

requirements on h I I_1 s p than the standard method. 
Let x(z) , p (2’) , p( 2) be infinitely differentiable, and starting with 2 = J$ , are COP 

star& Let us examine the domain 0 < rj < minDp (2) . The characteristic numbers of 

the matrix fl decompose into three groups 

:rt - rflp (2: a), (3 -t_ FMp fz. Q), (3) _t m, (5, 5) 

such that the numbers of one group do not equal the numbers of the other groups. Under 

‘) The Tamarkin formulas have been proved in the 
B 

eneral case for a fir&e interval, 
however it ma be shown [5] that they are valid for 1. 8) even in the interval 
OsZ<+ca if a ~ g t p satisfy some conditions at infinity l 
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these conditions, the results of Feshchenko [SJ and of Iliukhin p] may be utilized, from 

which it follows that there exists a nondegenerate transformation 

z = U (2, k, 0) x (2.4) 

which reduces the system to quasi-diagonal form (2.5) 

x’ = kB (z, k, a) X, B (z, k, a) = [Bi (z, k, a), & (2, k. a), Bt (2, k, a)1 

B& k, a) = -mp(z, d-k-‘Tpmp 
1 (PM +o (k-s) 

Ba (2, k, 0) = mp (2, 0) - k-l 2% 
1 tp%)’ + 0 (k-3) 

233 (z, k, a) = ’ 
m,% 0) 

Here 
a (z, a) + b (2, Q) = -6 I P 

U (z, k, Q) = Uo (2, 0) + 0 (k-7 

u,-l(z, 6) H (2, 6) uo (29 4 = [(-“fa’ a1 O mp (z, (8 ) ’ (m,a ;, a) $1 
See the matrix uo , say, in PI, The fundamental matrix of the system (2.5) is also 

quasi-diagonal 

X (2, k, 4 = 1x1 (2, k+ o), X2 (2, k, a),, X, (z, k, u)l 

Let us introduce the notation 
(2.6) 

exp (k 5 ml (5, 6) dS )E xl (G y) [ ms]yi = xt (2, a) (1 = P, 4 
x 

The asymptotic Formulas for xl and x, are obtained at once 

X, (2, k, o) = x, (2, o) [p (0) / p (z) 1”s xp (~0) U + 0 @-‘)I 

X2 (2, k 0) = q, (2, 0) [P (3) / P (z)P xp (0, 4 11 + 0 (W (2.7) 
The system for & may be reduced to one second order equation of the form 

Y 
1, 

- k%z,2 (2, u)y + 0 (l)y = 0 (24 
Let us consider the function U, (2) to be monotonous for 2 <q and for z,, <z <zl 

where 
sgn Us’ (2) = sgn (2 - 20) for O<Z<L~ (2.9) 

(Let us recall that the velocities U, and V, are constant for z> z1 . ) 
Henceforth, only the domain 

0 <a < UM (PM - min {vso; v,,: min up (z)), nrro E v,(O), u._ = 0, (00)) 

is considered throughout. 
Evidently if cr < vsm z min 3, (z), there are no turning points. and we have the 

case examined in p]. For V, < u < vM there are just two (and, moreover, simpIe 
because of (2.2) ) turning points Z (a) and z+ ( 0) ; at these points m,‘= 0. 

We find the asymptotic of the solution of (2.8) (and thereby the ‘“symptotic of he 

matrix K3 ) in the pw=nce of two turning points by merging. Namely, let K,(z, k, a) 
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and K+ (2, k, 0) be sOme fundamental matrices of the system 

X3’ - kB, (z, k, CT) X, 
defined, “Z. l 

Evidentlv the matrix 
tz > zQ) 

X.--l (20, k, a) X+ (20, k, 5) (z < zo) 
(2.10) 

may be a continuous extension of & (Z, &, 0) to the left from + . 
It is convenient to take matrices having the asymptotic (on the appropriate intervals) 

X* (2, k, 6) = (P Cdh WP (E i- Q WY) Kt (2, k, 6) @Iii 

I.4 and V are the Airy functions as defined by Fok [S], for & and x, , 
Utiliizing the Debye asymptotic of the Airy functions for U, -j- 6 < CT < ?JM - 6 

we obtain 

for 2 > 2, (cr) + 8 

Here, and henceforth, the symbol 4 replaces the symbol o( ?$-I) and we have intro- 

duced the notation 

The matrix & oscillates in the interval (2, t Z+ ) . 

3. Di@psrrioa c urvbt, We shall designate graphs of the solution B = Q(k) Of 
the dQer&+n Eq, (1.11) as the dispersion curves. 

From (2.12) and (2.13), we obtain an asymptotic representation of the dispersion 
equation in the domain v, -j- 6 < u < vM - S 

where 
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R’ (k, 6) = sin 0 (k, 6) i_ 01, --y 
s (k, 5) z (1 t_ mso”)z f 4r,lpO”“s0 $ 01, f (3) = 

S’ (k, 6) = cos CD (k, 5) + 01, a 

nb (5. a) d5 > 0 

This is an equation of the same type as has been studied earlier in [ 11. 

If the medium is such that ~:n < c,, (case A), then there exists an “intrinsically 

Rayleigh” solution of Eq. (1.11) of type (2.3), and Eq. (3.1) yields a family of “wave- 
guide” curves of simple form (Fig. 2a), 

If, however, usr,, < vn < til% (case B), then the picture is complicated (Fig. 2b). 
Characteristic here is the presence of 
points of an exponential approach of 

adjacent curves. The corresponding 

domains, encircled by dashes in Fig. 2b, 

we shall call domains (neighborhoods) 

Let us divide each dispersion curve 

in case B into sections 1,. , . ,6, as is 
Fig. 2 shown in Fig 2b. The sections 2 and 

5 lie in the quasi-intersection neigh- 

borhoods ; the line J?( k, U) = 0 (dashed) is intersected by the dispersion curves on the 

boundary of the sections 3 and 4. 
In the next Section, the behavior of the solution of the problem (1.5) to (1.7) is con- 

sideredforksl asafunctionofZfor O<Sgo\<u,,-6 andfor v,m+8<a< 
< uM - 6. For simplicity, the first component & of the eigenfunctions in the intervals 

o<z,<z_-- e, z_+e<z<z+- e and z > z, -t e, will be investigated, which will 

correspond to replacement of the Airy functions by their Debye asymptotic, although our 
formulas of Section 2 permit also the investigation of the domain CJM U, I and the behav- 

ior of the eigenfunctions in the whole 2 2 0 interval including the neighborhoods of the 
points 2, and 2, . 

4. Dependence of the solutions on 2 . Let us proceed from the asymp-a 

totic formulas of Section 2 and the expressions for the eigenfunctions 

G (z, k, o) = m [Dp (k, @G’ (2, k 0) - Q (k, 0) Gp (2, k, a)1 
where ?TJ is an arbitrary factor independent of 2 (we henceforth omit this factor). 

In case A the intrinsic Rayleigh oscillation is described for 2 2 0 by 

G, (2, k o) = 0 (~8 (2, 0)) (4.1) 

For V,, + 6 < (J < VM - 6 we have in both cases in the interval OSZZZZ(Q)+ : 

G, (z, k, 0) = Sx, (z, 0) - (1 + 0,) Rx, (0, 4 + rxp (2, 0) (4.2) 

z = t (z, k 0) = 4 (1 + nQ + 0,)~~ x8 > 0 
The functions XI, xl (I = p, s) are defined in Section 2. 
In case A for the waveguide oscillations 8 2 8 > o . 
For z= 0 

c,= s --R+++0,>Q 

For 2 2 6 > 0, k X+ 1 the function Gl c 0, therefore, near z = o there is a zero 
z(O) (k) of the function G,(z, kc, 0). It is easy to see that 
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z(O) (k) = 0, > 0 (4.3) 

At the point .zc2) (k) = do) (k) + 0, th e graph of G1 ( Z) has an inflection ; the deriva- 
tive dG1 l&r < 0 for 0 SZ 5 Z_ -_g . 

Thus for waveguide oscillations 

G, (2, k, a) = 0 (X8 (0, 2)) (z(O) \( 2 f 2 - E) (4.4) 
The waveguide-type eigenfunctions in the interval z_ + e < z < z+ - E oscillate 

in conformity with Formula 

Gl (2, k, a) = (’ m;(;;)G) ’ )” (cos Yp -+ 01) W-3 

v = Yp (z, k, CJ) = k s I ma (59 4 I dS + + 
z-(a) 

G (2, k, a) = 0 (x, (z, z+)> for z>, z+ + e (4.6) 

Graphs of Go corresponding to case A are pictured schematically in Fig. 3 (the 

normalization of the eigenfunctions is defined by considerations of convenience for the 

sketch), 

Let us consider case B . For k 3 1 the deriva- 
tive a&‘/&J> 0,hence the line A(k, a) = 0 

(Fig, 2b, dashed) divides each dispersion curve into 

G, 

Fig. 3 Fig, 4 

two parts : 8 > 0 on sections 1,2,3, and 8 < 0 on sections 4,5,6. For section 1 we have 

exactly the same as for the waveguide oscillations in case A . For section 3 

IR*I--1, R = s&s* (2R*)-r exp (- 2kf (a)) > 0 

Hence, for 0 < z < z_ - a 

G, (r, k, o) = 8% (z, 6) - ss+/2EPx,2 (L, op, (0, z) + zxP (z, 0) (4.7) 

It is seen that for sufficiently large k the function Gl(a is monotonously decreasing 
in the interval (0, Z_-S). 

As a point moves along the dispersion curve from section 1 to section 3, the quantity 
8, remaining positive, changes order from 1 to exp(-2 w). It is easy to see that this 

causes the motion of the zero z (l) (k) of the function Go from z = 01 to I = z_-c . 
On section 4 of type 8 < 0, however, Gl(z) is monotonous as before in the interval 

(0 , Z--C). On section 5. C&(Z) has an extremum at the point ~(~1 (k), which is dis- 
placed from z = 0 1 to 2 = Z_ --8 as the point (k, 6) moves along the dispersion curve 

from the section 6 to section 4. 
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Now u(l) (k) = 0, on section 6. Graphs of the dependence Go in the interval 

[O, z_ -c ] are given schematically for case .L?? in Fig. 4. 

The eigenfunetions oscillate in the interval z_ _t e < z Q a+ - a, and for Zr Zc + S 

decrease monotonously as in case A . 
Therefore, in case A (vn < min us (2)) the intrinsic Rayleigh wave has completely 

usual properties since its amplitude decreases as exp(- kao) (C > 0) for all Z. In case 
B { v R > min us (z)) waves close to the customary Rayleigh waves in their properties will 

correspond to the intrinsically Rayleigh portions (3 and 4) of the dispersion curves ; they 

are noticeable only near the surface, and have a small oscillation within the waveguide. 
In both case A and case B the intrinsically waveguide waves possess the customary pro- 

perties ; they are noticeable only within the waveguide. In case J!? there are also solutions 

of transition type, corresponding to quasi-intersection neighborhoods (sections 2 and 5). 

These waves are noticeable both near the surface, and also within the waveguide, Appar- 

ently these waves are of interference character. 

In conclusion, let us note that the expounded method is applicable without substantial 
changes, even in the case when h v l-l , P (or their derivatives) have jumps at Z= a s 
and are infinitely smooth otherwise. 
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